Tensil.ai

Technology Overview

NIME Workshop - 2022/06/28

"One-click" accelerators

What if you could just run this to get a custom ML accelerator specialized to
your needs?

‘ $ tensil rtl --arch <my_architecture>

What if compiling your ML model for that accelerator target was as easy as
running this?

‘ $ tensil compile --arch <my_architecture> --model <my_model>

© Tensil Al Company 2022

What is Tensil?

Tensil is a set of free and open source tools for running machine learning
models on custom accelerator architectures. It includes:

e RTL generator
e ML model compiler

e Drivers

It enables you to create a custom accelerator, compile an ML model targeted
at it, and then deploy and run that compiled model.

© Tensil Al Company 2022

From prototype to production

The primary goal of Tensil is to allow anyone to run their applications on
domain-specific accelerators.

e Tensil makes it easy to get started with an accelerator for prototyping and
early products

e To scale up to mature production, we crank up the optimizations and the
user gets a drop-in replacement (paid service)

© Tensil Al Company 2022

Why should you use Tensil (as of June 2022)?

e you have a convolutional neural network based ML workload
e you need to run it at the edge (i.e. not in a data-center)

e you want to avoid changing your model

Current limitations

e doesn't support recurrent neural networks

e driver support for FPGAs only

Help us plan our roadmap!

© Tensil Al Company 2022

How to install

To install from Docker, run:

$ docker pull tensilai/tensil:latest
$ docker run -v $(pwd):/work -w /work -it tensilai/tensil:latest bash

You will be dropped into a shell inside the Tensil container. Run

‘ $ tensil compile --help

to verify that it is working correctly.

© Tensil Al Company 2022

Generate an accelerator (RTL blob)

$ tensil rtl -a <tarch_file> -d <axi_port_width>

You should see some output like this:

$ tensil rtl -a /demo/arch/ultra96v2.tarch -d 128
Elaborating design...
Done elaborating.

Verilog bram_dp_256x4096: /work/bram_dp_256x4096.v
Verilog bram_dp_256x20480: /work/bram_dp_256x20480.v
Verilog top_ultra9e6v2: /work/top_ultra9ev2.v
Driver parameters C header: /work/architecture_params.h

© Tensil Al Company 2022

Integrate RTL block

1. Instantiate Tensil IP

2. Connect AXI interfaces
a. One AXI-S slave receives instructions from host

b. Two AXI masters for host memory access

3. Generate bitstream

© Tensil Al Company 2022

Compile an ML model

‘ $ tensil compile -a <tarch_file> -m <onnx_file> -0 output_node -s true

You should see some output like this:

Model: resnet20v2_cifar_onnx_ultra96v2

Data type: FP16BP8

Array size: 16

Consts memory aggregate usage (vectors/scalars): 35,743 571,888
Vars memory aggregate usage (vectors/scalars): 46,097 737,552
Number of layers: 23

Total number of instructions: 102,741

Consts utilization (%): 97.210

True MACs (M): 61.476

ARTIFACTS

Manifest: /work/resnet20v2_cifar_onnx.tmodel
Constants: /work/resnet20v2_cifar_onnx.tdata
Program: /work/resnet20v2_cifar_onnx.tprog

$ tensil compile -a /demo/arch/ultra96v2.tarch -m /demo/models/resnet20v2_cifar.onnx -o "Identity:0" -s true

© Tensil Al Company 2022

Run the compiled model (PYNQ example)

Get the Tensil PYNQ driver, then import it and run!

from pynqg import Overlay
from tcu_pyng.driver import Driver
from tcu_pyng.architecture import ultra96

bitstream = '/home/xilinx/ultra96-tcu.bit'’
overlay = Overlay(bitstream)
tcu = Driver(ultra96, overlay.axi_dma_0)

resnet = '/home/xilinx/resnet20v2 _cifar_onnx_ultra96v2.tmodel'
tcu. load_model(resnet)

img = ...
output = tcu.run({'x:0': img})

© Tensil Al Company 2022

Accelerator
architecture

© Tensil Al Company 2022

[Host

[] Data

[l control
[] samples

o

Il

=
-

Memory

L

e

Systolic array

| Y

I

Lookup tables

L

v

ALU array

Iy
4 I

Accumulators

1

Instruction set

MatMul

DataMove

LoadWeight
SIMD

Configure

© Tensil Al Company 2022

Description

Load input at memory address into systolic array and store
result at accumulator address

Move data between the main memory and either the
accumulators or one of two off-chip DRAMs

Load weight from memory address into systolic array
Perform computations on data in the accumulator

Set configuration registers

12

Frontend

emitInputObject
emitOutputObject
getOrEmitWeightsAndBiasObjects
allocateVarsObject
allocateTempObject

Scheduler

Memory Manager

Compiler
structure

© Tensil Al Company 2022

Benchmarks

ResNet-20v2 trained for CIFAR

FPGA Tensil Array Clock

Board Size (MH2z)
Arty A7-35 8x8 150
Pynq Z1 12x12 150

Ultra96-Vv2 16x16 300

© Tensil Al Company 2022

Latency
(ms)

21
14

Frames per
second

48
71
250

14

https://digilent.com/reference/programmable-logic/arty-a7/start
https://digilent.com/reference/programmable-logic/pynq-z1/start
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/ultra96-v2/

Learn more

Website: www.tensil.ali
Email: contact@tensil.ai
Github: github.com/tensil-ai

Discord: discord.gg/TSw34H3PXr

Thank you!

© Tensil Al Company 2022

15

http://www.tensil.ai/
mailto:contact@tensil.ai
http://github.com/tensil-ai
http://discord.gg/TSw34H3PXr

