Tensil.ai

Technology Overview

NIME Workshop - 2022/06/28



"One-click" accelerators

What if you could just run this to get a custom ML accelerator specialized to
your needs?

‘ $ tensil rtl --arch <my_architecture>

What if compiling your ML model for that accelerator target was as easy as
running this?

‘ $ tensil compile --arch <my_architecture> --model <my_model>
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What is Tensil?

Tensil is a set of free and open source tools for running machine learning
models on custom accelerator architectures. It includes:

e RTL generator
e ML model compiler

e Drivers

It enables you to create a custom accelerator, compile an ML model targeted
at it, and then deploy and run that compiled model.
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From prototype to production

The primary goal of Tensil is to allow anyone to run their applications on
domain-specific accelerators.

e Tensil makes it easy to get started with an accelerator for prototyping and
early products

e To scale up to mature production, we crank up the optimizations and the
user gets a drop-in replacement (paid service)
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Why should you use Tensil (as of June 2022)?

e you have a convolutional neural network based ML workload
e you need to run it at the edge (i.e. not in a data-center)

e you want to avoid changing your model

Current limitations

e doesn't support recurrent neural networks

e driver support for FPGAs only

Help us plan our roadmap!
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How to install

To install from Docker, run:

$ docker pull tensilai/tensil:latest
$ docker run -v $(pwd):/work -w /work -it tensilai/tensil:latest bash

You will be dropped into a shell inside the Tensil container. Run

‘ $ tensil compile --help

to verify that it is working correctly.
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Generate an accelerator (RTL blob)

$ tensil rtl -a <tarch_file> -d <axi_port_width>

You should see some output like this:

$ tensil rtl -a /demo/arch/ultra96v2.tarch -d 128
Elaborating design...
Done elaborating.

Verilog bram_dp_256x4096: /work/bram_dp_256x4096.v
Verilog bram_dp_256x20480: /work/bram_dp_256x20480.v
Verilog top_ultra9e6v2: /work/top_ultra9ev2.v
Driver parameters C header: /work/architecture_params.h
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Integrate RTL block

1. Instantiate Tensil IP

2. Connect AXI interfaces
a. One AXI-S slave receives instructions from host

b. Two AXI masters for host memory access

3. Generate bitstream
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Compile an ML model

‘ $ tensil compile -a <tarch_file> -m <onnx_file> -0 output_node -s true

You should see some output like this:

Model: resnet20v2_cifar_onnx_ultra96v2

Data type: FP16BP8

Array size: 16

Consts memory aggregate usage (vectors/scalars): 35,743 571,888
Vars memory aggregate usage (vectors/scalars): 46,097 737,552
Number of layers: 23

Total number of instructions: 102,741

Consts utilization (%): 97.210

True MACs (M): 61.476

ARTIFACTS

Manifest: /work/resnet20v2_cifar_onnx.tmodel
Constants: /work/resnet20v2_cifar_onnx.tdata
Program: /work/resnet20v2_cifar_onnx.tprog

$ tensil compile -a /demo/arch/ultra96v2.tarch -m /demo/models/resnet20v2_cifar.onnx -o "Identity:0" -s true
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Run the compiled model (PYNQ example)

Get the Tensil PYNQ driver, then import it and run!

from pynqg import Overlay
from tcu_pyng.driver import Driver
from tcu_pyng.architecture import ultra96

bitstream = '/home/xilinx/ultra96-tcu.bit'’
overlay = Overlay(bitstream)
tcu = Driver(ultra96, overlay.axi_dma_0)

resnet = '/home/xilinx/resnet20v2 _cifar_onnx_ultra96v2.tmodel'
tcu. load_model(resnet)

img = ...
output = tcu.run({'x:0': img})
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Accelerator
architecture
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Instruction set

MatMul

DataMove

LoadWeight
SIMD

Configure
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Description

Load input at memory address into systolic array and store
result at accumulator address

Move data between the main memory and either the
accumulators or one of two off-chip DRAMs

Load weight from memory address into systolic array
Perform computations on data in the accumulator

Set configuration registers
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Frontend

emitInputObject
emitOutputObject
getOrEmitWeightsAndBiasObjects
allocateVarsObject
allocateTempObject

Scheduler

Memory Manager

Compiler
structure
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Benchmarks

ResNet-20v2 trained for CIFAR

FPGA Tensil Array Clock

Board Size (MH2z)
Arty A7-35 8x8 150
Pynq Z1 12x12 150

Ultra96-Vv2 16x16 300
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Latency
(ms)

21
14

Frames per
second

48
71
250
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https://digilent.com/reference/programmable-logic/arty-a7/start
https://digilent.com/reference/programmable-logic/pynq-z1/start
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/ultra96-v2/

Learn more

Website: www.tensil.ali
Email: contact@tensil.ai
Github: github.com/tensil-ai

Discord: discord.gg/TSw34H3PXr

Thank you!
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