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Abstract

Several state-of-the-art frameworks allow the creation,
training, and deployment of neural network models. Some
of these also allow the deployment of models on embedded
devices mainly for inference.

The models, aimed typically at recognition and classi-
fication tasks, must be heavily optimized to run under the
constrained conditions of such devices. Furthermore, in
several audio-related tasks, real-time inference is required.

Previous attempts at running real-time audio inference
on the low-latency Bela board, have relied on the re-
implementation of such models. In this work, I present a
general method for the direct deployment of models using
several state-of-the-art deep learning frontends. Addition-
ally, I include a performance benchmark and examples of
real-time audio inference using this method.

1. Introduction
Deep learning for embedded and mobile devices has

gained popularity in recent years [2]. This is mainly due
to the greater capabilities, reduced manufacturing cost, and
better efficiency exemplified by devices such as the Rasp-
berry Pi [12] or the NVIDIA Jetson [6]. While training neu-
ral networks on such devices is oftentimes prohibitive due
to computational costs, the inference is possible. Several
state-of-the-art frameworks [7], have introduced reduced or
specialized versions to enable inference on such devices.

The performance of specialized inference pipelines is
a crucial point in the development of deep learning solu-
tions for embedded devices [5, 13]. Typically, the models
used on these devices are oriented toward visual recognition
and classification tasks, that require efficient implementa-
tions [4, 9].

In the audio domain, neural networks have also been
mainly oriented towards similar tasks, such as keyword
spotting [14] and speech recognition [10]. Recently, De-
vis et al. [3] also demonstrated neural synthesis models run-
ning on an NVIDIA Jetson Nano.1

1https://developer.nvidia.com/embedded/jetson-

The low-latency Bela platform, a BeagleBone Black-
based device, offers better capabilities than others for audio
and sensor processing. Solomes et al. [11] show that it is
possible to use neural networks for inference in this device.
However, their approach requires an explicit implementa-
tion of the model itself, preventing trying different models
at runtime without a re-implementation. Essentially, for this
approach, it is necessary to translate the operations needed
for inference (e.g., matrix multiplication, non-linear acti-
vations) to highly optimized C++ and sometimes assembly
code.

Frameworks such as Pytorch [8] and Tensorflow [1] im-
plement ready-to-use optimized versions of these opera-
tions. However, compiling and setting a build environment
specifically for these frameworks on the Bela is a complex
and time-demanding task due to the limited resources for
compilation on the device. Moreover, to perform inference,
it is necessary to consider not only the former limitations but
also the strict latency requirements, especially for models
oriented towards real-time signal processing, such as syn-
thesis and filtering.

The present contributions are three:

• A cross-compilation environment and a wrapper for
the ArmNN, Libtorch, TFLite, and RTNeural fron-
tends.

• Evaluation of the inference time on the Bela for each
frontend.

• Diverse examples that show how to use the wrapper for
real-time audio tasks.
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