
Deep Learning For Bela

Rodrigo Diaz
Queen Mary University of London

r.diazfernandez@qmul.ac.uk

Abstract

Several state-of-the-art frameworks allow the creation,
training, and deployment of neural network models. Some
of these also allow the deployment of models on embedded
devices mainly for inference.

The models, aimed typically at recognition and classi-
fication tasks, must be heavily optimized to run under the
constrained conditions of such devices. Furthermore, in
several audio-related tasks, real-time inference is required.

Previous attempts at running real-time audio inference
on the low-latency Bela board, have relied on the re-
implementation of such models. In this work, I present a
general method for the direct deployment of models using
several state-of-the-art deep learning frontends. Addition-
ally, I include a performance benchmark and examples of
real-time audio inference using this method.

1. Introduction
Deep learning for embedded and mobile devices has

gained popularity in recent years [2]. This is mainly due
to the greater capabilities, reduced manufacturing cost, and
better efficiency exemplified by devices such as the Rasp-
berry Pi [12] or the NVIDIA Jetson [6]. While training neu-
ral networks on such devices is oftentimes prohibitive due
to computational costs, the inference is possible. Several
state-of-the-art frameworks [7], have introduced reduced or
specialized versions to enable inference on such devices.

The performance of specialized inference pipelines is
a crucial point in the development of deep learning solu-
tions for embedded devices [5, 13]. Typically, the models
used on these devices are oriented toward visual recognition
and classification tasks, that require efficient implementa-
tions [4, 9].

In the audio domain, neural networks have also been
mainly oriented towards similar tasks, such as keyword
spotting [14] and speech recognition [10]. Recently, De-
vis et al. [3] also demonstrated neural synthesis models run-
ning on an NVIDIA Jetson Nano.1

1https://developer.nvidia.com/embedded/jetson-

The low-latency Bela platform, a BeagleBone Black-
based device, offers better capabilities than others for audio
and sensor processing. Solomes et al. [11] show that it is
possible to use neural networks for inference in this device.
However, their approach requires an explicit implementa-
tion of the model itself, preventing trying different models
at runtime without a re-implementation. Essentially, for this
approach, it is necessary to translate the operations needed
for inference (e.g., matrix multiplication, non-linear acti-
vations) to highly optimized C++ and sometimes assembly
code.

Frameworks such as Pytorch [8] and Tensorflow [1] im-
plement ready-to-use optimized versions of these opera-
tions. However, compiling and setting a build environment
specifically for these frameworks on the Bela is a complex
and time-demanding task due to the limited resources for
compilation on the device. Moreover, to perform inference,
it is necessary to consider not only the former limitations but
also the strict latency requirements, especially for models
oriented towards real-time signal processing, such as syn-
thesis and filtering.

The present contributions are three:

• A cross-compilation environment and a wrapper for
the ArmNN, Libtorch, TFLite, and RTNeural fron-
tends.

• Evaluation of the inference time on the Bela for each
frontend.

• Diverse examples that show how to use the wrapper for
real-time audio tasks.

References
[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, et al. {TensorFlow}:
A system for {Large-Scale} machine learning. In 12th
USENIX symposium on operating systems design and imple-
mentation (OSDI 16), pages 265–283, 2016. 1

nano-developer-kit

https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit


[2] Jiasi Chen and Xukan Ran. Deep learning with edge comput-
ing: A review. Proceedings of the IEEE, 107(8):1655–1674,
2019. 1

[3] Ninon Devis and Philippe Esling. Neurorack: deep audio
learning in hardware synthesizers. In EPFL Workshop on
Human factors in Digital Humanities, number CONF, 2021.
1

[4] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 1

[5] Liangzhen Lai, Naveen Suda, and Vikas Chandra. Cmsis-
nn: Efficient neural network kernels for arm cortex-m cpus.
arXiv preprint arXiv:1801.06601, 2018. 1

[6] Sparsh Mittal. A survey on optimized implementation of
deep learning models on the nvidia jetson platform. Journal
of Systems Architecture, 97:428–442, 2019. 1

[7] Aniruddha Parvat, Jai Chavan, Siddhesh Kadam, Souradeep
Dev, and Vidhi Pathak. A survey of deep-learning frame-
works. In 2017 International Conference on Inventive Sys-
tems and Control (ICISC), pages 1–7. IEEE, 2017. 1

[8] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
1

[9] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 1

[10] Yuan Shangguan, Jian Li, Qiao Liang, Raziel Alvarez, and
Ian McGraw. Optimizing speech recognition for the edge.
arXiv preprint arXiv:1909.12408, 2019. 1

[11] Alexandru-Marius Solomes and Dan Stowell. Efficient bird
sound detection on the bela embedded system. In ICASSP
2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 746–750.
IEEE, 2020. 1

[12] Ahmet Ali Süzen, Burhan Duman, and Betül Şen. Bench-
mark analysis of jetson tx2, jetson nano and raspberry pi us-
ing deep-cnn. In 2020 International Congress on Human-
Computer Interaction, Optimization and Robotic Applica-
tions (HORA), pages 1–5. IEEE, 2020. 1

[13] Gaurav Verma, Yashi Gupta, Abid M Malik, and Barbara
Chapman. Performance evaluation of deep learning com-
pilers for edge inference. In 2021 IEEE International
Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 858–865. IEEE, 2021. 1

[14] Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas
Chandra. Hello edge: Keyword spotting on microcontrollers.
arXiv preprint arXiv:1711.07128, 2017. 1


	. Introduction

